Pagina:Opere matematiche (Cremona) I.djvu/390

Da Wikisource.
Jump to navigation Jump to search
376 introduzione ad una teoria geometrica delle curve piane.


Art. XII.

Costruzione della curva di terz’ordine determinata da nove punti.

65. Il teorema generale (50) per , , suona così:

Dato un fascio di coniche, proiettivo ad una stella data, il luogo de’ punti in cui i raggi della stella segano le corrispondenti coniche è una curva di terz’ordine (o cubica) passante pei quattro punti comuni alle coniche e pel centro della stella.

Se è il centro della stella, la tangente in alla cubica è il raggio corrispondente a quella conica (del fascio) che passa per .

Se è uno de’ punti-base del fascio di coniche, la tangente in alla cubica è la retta che nel punto medesimo tocca la conica corrispondente al raggio (51, a).

I teoremi inversi del precedente si ricavano da quello del n.° 54:

1.° Fissati ad arbitrio in una cubica quattro punti , ogni conica descritta per essi sega la cubica in due punti ; la retta passa per un punto fisso della cubica medesima. Le coniche per e le rette per formano due fasci projettivi. Il punto dicesi opposto ai quattro punti .

2.° Fissati ad arbitrio in una cubica tre punti ed un altro punto , ogni retta condotta per sega la curva in due punti ; la conica descritta per passa per un altro punto fisso della cubica. Le coniche per e le rette per si corrispondono proiettivamente.

66. Siano ora dati nove punti e si voglia costruire la curva di terz’ordine da essi determinata, mediante due fasci projettivi, l’uno di coniche, l’altro di rette. Per formare le basi de’ due fasci sono necessari cinque punti: ma uno fra essi (57) non può essere assunto ad arbitrio fra i punti dati, bensì solamente gli altri quattro.

Secondo che il punto incognito si attribuisce al fascio di rette o al fascio di coniche, si hanno due diversi modi di costruire la curva di terz’ordine, i quali corrispondono ai due teoremi (65, 1.°, 2.°). Noi qui ci limitiamo al solo primo modo di costruzione, che è dovuto al sig. Chasles1.


  1. Construction de la courbe du 3. ordre déterminée par neuf points (Comptes rendus, 30 mai 1853).
    Per altre costruzioni delle cubiche e delle curve d’ordine superiore veggansi le eccellenti Memorie: Jonquières, Essai sur la génération des courbes géométriques etc.Hærtenberger, Ueber die Erzeugung geometrischer Curven (Giornale Crelle-Borchardt, t. 58, Berlino 1860, p. 54). — {Cfr. Grassmann nel Giornale di Crelle, t. 31, 36, [42, 44], 52} [anni 1846, 1848, 1851, 1852, 1856].