Pagina:Schiaparelli - Scritti della astronomia antica, 1926.djvu/372

Da Wikisource.
Jump to navigation Jump to search

del prof. m. cantor 363

indiana in una classe di scritti finora non esaminati sotto quest’aspetto, sebbene Burnell già vi avesse fatto accenno1.

I riti indiani contengono certe prescrizioni, per adempire le quali colla più scrupolosa esattezza occorrono regole di geometria. Se l’altare non è costruito esattamente secondo la forma prescritta, se un lato non è esattamente perpendicolare ad un altro, se vi è qualche errore nell’orientazione, la divinità non aggradisce il sacrifizio. Idea questa terribile per un Indiano, il quale non vede nel sacrifizio che una specie di contratto formale, una specie di scambio colla divinità, e non può quindi sperare di veder adempiti i suoi desideri, se quella non gradisce l’offerta. Le prescrizioni rituali relative ai sacrifizi si trovano nei così detti Kalpasutra, e ad ogni Kalpasutra corrispondeva come suddivisione, a quanto pare, un Çulvasûtra, che contiene appunto le regole geometriche in questione.

Thibaut ha esaminato tre di questi Çulvasûtra2, cui si danno per autori Baudhàyana, Apastamba e Kàtyàyana, e si è mostrato in questa ricerca così esperto matematico e calcolatore, che la storia delle matematiche ha diritto di sperare da lui accrescimenti non meno nuovi che esatti, quand’egli seguendo l’incominciata via continui a cercare traccie di notizie matematiche negli scritti non astronomici della letteratura sanscrita.

Abbiamo già detto, che la forma dell’altare è riguardata come essenziale. Essa ha cambiato, prendendo col tempo diverse figure, che per ogni mente non indiana toccano il ridicolo. Qual europeo può immaginarsi di costruire un altare in forma di un falco o d’un altro uccello, d’una ruota di carro, ecc.? Ma tutte queste forme sono regolate da due leggi matematiche, a ciascuna delle quali corrisponde un gruppo speciale di problemi3.

  1. Burnell, Catalogue of a collection of Sanskrit manuscripts p. 29
  2. The Çulvasûtra by G. Thibaut. Ph. D. Anglo-Sanscrit professor. Bânaras College. Reprinted from the Journal of the Asiatic Society of Bengal. Part. I, for 1875. Citiamo questo scritto col nome: Thibaut.
  3. Thibaut, p. 5: «The area of every chiti, whatever its shape may be — fatcon with curved wings, wheel, präuga, tortoise, etc., — had to be equal to 7½ square purushas. On the when hand, when at the second costruction of the altar one square purusha to be added to the 7½ constituting the first chiti, and when for the third construction 2 square purushas more were required, the shape of the whole, the relative proportions of the single parts had to reman uncharged».