Pagina:Sulle serie a termini positivi.djvu/18

Da Wikisource.
46 ulisse dini


In particolare si ha dunque che le serie


ove è positiva, sono tutte divergenti.

Analogamente si potrebbe vedere che le serie (5) corrispondenti a


ove , e sono positive, sono convergenti se , divergenti se .


16. Ritorniamo adesso al criterio del numero 1; questo criterio, come dicemmo, potrà sempre servire poichè, data una serie , esistono sempre infinite funzioni tali che l’applicazione del criterio riesce decisivo. Però queste funzioni dipenderanno dalla natura di , ed anzi in generale possiamo ora mostrare che non esiste una funzione tale che con essa il criterio riesca decisivo per qualunque serie , tale cioè che con essa si trovi sempre


se la serie è convergente, e


se la serie è divergente.

Sia infatti, se è possibile, una tale funzione; la serie sarà divergente (num. 4), e quindi indicando con la somma dei suoi primi termini, anche la serie sarà divergente (num. 6), e quindi per essa dovrebbe aversi . Ora invece per essa si trova


e quindi se ne conclude che la funzione voluta non può esistere.