Pagina:Sulle serie a termini positivi.djvu/33

Da Wikisource.

sulle serie a termini positivi 61



25. Nella scelta della funzione la quale fa sì che il criterio divenga decisivo, ordinariamente converrà procedere per tentativi. Però può darsi qui una proprietà di questa funzione , mediante la quale potranno talvolta risparmiarsi dei tentativi laboriosi e infruttuosi.

Riprendiamo infatti la formola


e supponiamo che la serie alla quale si applica il criterio sia convergente. È chiaro allora che, siccome la parte di è sempre positiva, non potrà mai avere un limite differente da zero finchè sia tale che , e quindi si può dire intanto che, se è convergente, affinchè servendosi della serie divergente il criterio riesca decisivo, dovrà essere tale che .

Se poi è divergente, l’imporre a questa condizione non arreca alcuno svantaggio.

Però bisogna osservare che non sempre sarà possibile trovare una funzione tale che , e che al tempo stesso la serie sia divergente. Ma in questo caso evidentemente la serie sarà divergente, e quindi si può concludere che: Scelta una serie divergente , se con essa si troverà , la nuova serie divergente che converrà scegliere per rendere decisivo il criterio, dovrà essere tale che : e se questa serie divergente non potrà esistere si potrà subito affermare che la serie è divergente.


26. Questa semplice osservazione conduce subito al noto teorema di Gauss che ci dice che: La serie nella quale si ha


ove è una costante positiva e sono costanti, è convergente se , e divergente se .