Pagina:Sulle serie a termini positivi.djvu/5

Da Wikisource.
Jump to navigation Jump to search

sulle serie a termini positivi 33

e negativi, e sono continuamente e indefinitamente decrescenti è sempre convergente.

Osserviamo perciò che questa serie può scriversi , e così ha i termini positivi. Se ora si prende , si trova subito


e quindi la serie è convergente.


4. Dimostriamo adesso il teorema seguente:

Se sono quantità positive che decrescono continuamente e indefinitamente la serie

(1)
è sempre divergente.

Si prenda infatti ; si troverà

,


e quindi la serie sarà divergente.

Es. Si prenda , la serie (1) diviene la ; e questa è divergente.

Si prenda ancora ; la (1) diverrà


e se ne concluderà che questa serie è divergente.


5. Se la serie è convergente, la serie sarà divergente.