Pagina:211septies.djvu/411

Da Wikisource.
Jump to navigation Jump to search


nologie; utilizza la lingua straniera per lo studio e l’apprendimento di argomenti inerenti le discipline non linguistiche.

MATEMATICA

LINEE GENERALI E COMPETENZE

Al termine del percorso del liceo delle scienze umane (opzione economico-sociale) lo studente conoscerà i concetti e i metodi elementari della matematica, sia interni alla disciplina in se’ considerata, sia rilevanti per la descrizione e la previsione di fenomeni, sia nell’ambito classico del mondo fisico che nell’ambito della sfera sociale ed economica. Egli saprà inquadrare le varie teorie matematiche studiate nel contesto storico entro cui si sono sviluppate e ne comprenderà il significato concettuale.

Lo studente avrà acquisito una visione storico-critica dei rapporti tra le tematiche principali del pensiero matematico e il contesto filosofico, scientifico e tecnologico. In particolare, avrà acquisito il senso e la portata dei tre principali momenti che caratterizzano la formazione del pensiero matematico: la matematica nella civiltà greca, la matematica infinitesimale che nasce con la rivoluzione scientifica del Seicento e che porta alla matematizzazione del mondo fisico, la svolta che prende le mosse dal razionalismo illuministico e che conduce alla formazione della matematica moderna e a un nuovo processo di matematizzazione che investe nuovi campi (tecnologia, scienze sociali, economiche, biologiche) e che ha cambiato il volto della conoscenza scientifica.

Di qui i gruppi di concetti e metodi che saranno obiettivo dello studio: 1) gli elementi della geometria euclidea del piano e dello spazio entro cui prendono forma i procedimenti caratteristici del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, assiomatizzazioni); 2) gli elementi del calcolo algebrico, gli elementi della geometria analitica cartesiana, una buona conoscenza delle funzioni elementari dell’analisi, le nozioni elementari del calcolo differenziale e integrale; 3) gli strumenti matematici di base per lo studio dei fenomeni fisici, con particolare riguardo al calcolo vettoriale e alle equazioni differenziali, in particolare l’equazione di Newton e le sue applicazioni elementari; 4) la conoscenza elementare di alcuni sviluppi della matematica moderna, in particolare degli elementi del calcolo delle probabilità e dell’analisi statistica; 5) il concetto di modello matematico e un’idea chiara della differenza tra la visione della matematizzazione caratteristica della fisica classica (corrispondenza univoca tra matematica e natura) e quello della modellistica (possibilità di rappresentare la stessa classe di fenomeni mediante differenti approcci); 6) costruzione e analisi di semplici modelli matematici di classi di fenomeni, anche utilizzando strumenti informatici per la descrizione e il calcolo, con particolare riguardo per la modellistica economico-sociale; 7) una chiara visione delle caratteristiche dell’approccio assiomatico nella sua forma moderna e delle sue specificità rispetto all’approccio assiomatico della geometria euclidea classica; 8) una conoscenza del principio di induzione matematica e la capacità di saperlo applicare, avendo inoltre un’idea chiara del significato filosofico di questo principio ("invarianza delle leggi del pensiero"), della sua diversità con l’induzione fisica ("invarianza delle leggi dei fenomeni") e di come esso costituisca un esempio elementare del carattere non strettamente deduttivo del ragionamento matematico.

Questa articolazione di temi e di approcci costituirà la base per istituire collegamenti e confronti concettuali e di metodo con altre discipline come la fisica, le scienze naturali e sociali, la filosofia e la storia.