Pagina:Beltrami - Saggio di interpretazione della geometria non euclidea, 1868.djvu/6

Da Wikisource.

)(2)(

possa più rettamente giudicare del significato inerente alla proposta interpetrazione.

Per non interrompere troppo spesso la nostra esposizione, abbiamo rimandato a note speciali, poste in fine, le dichiarazioni relative a certi risultati analitici sui quali dobbiamo appoggiarci.


Il criterio fondamentale di dimostrazione della geometria elementare è la sovrapponibilità delle figure eguali.

Questo criterio non è applicabile soltanto al piano, ma a tutte quelle superficie su cui possono esistere figure eguali in differenti posizioni, cioè a tutte quelle superficie di cui una porzione qualunque può essere adagiata esattamente, per via di semplice flessione, sopra una qualunque altra porzione della superficie stessa. Ognun vede infatti che la rigidezza delle superficie sulle quali le figure si concepiscono non è una condizione essenziale dell’applicazione di quel criterio, talchè p. es. non nuocerebbe all’esattezza delle dimostrazioni della geometria piana euclidea il concepirne le figure come esistenti sulla superficie di un cilindro o di un cono, anzichè su quella di un piano.

Le superficie per le quali si avvera incondizionatamente la proprietà anzidetta sono, in virtù di un celebre teorema di Gauss, tutte quelle che hanno costante in ogni punto il prodotto dei due raggi di curvatura principale, ossia tutte quelle la cui curvatura sferica è costante. Le altre superficie non ammettono l’applicazione incondizionata del principio di sovrapposizione al confronto delle figure tracciate sovr’esse, e quindi queste figure non possono avere una struttura affatto indipendente dalla loro posizione.

L’elemento più essenziale delle figure e delle costruzioni della geometria elementare è la linea retta. Il carattere specifico di questa è d’essere completamente determinata da due soli dei suoi punti, talchè due rette non possono passare per due dati punti dello spazio senza coincidere in tutta la loro estensione. Però nella geometria piana questo carattere non viene esaurito in tutta la sua latitudine, perchè, a ben guardare, la retta non è introdotta nelle considerazioni della planimetria che mercè il seguente postulato: Facendo combaciare due piani su ciascuno dei quali esiste una retta, basta che le due rette si sovrappongano in due punti, perciò riescano sovrapposte in tutta la loro estensione.

Ora questo carattere, così circoscritto, non è peculiare alle linee rette rapporto al piano; esso sussiste eziandio (in generale) per le linee geodetiche di una superficie di curvatura costante rapporto a questa superficie. Una linea geodetica ha già sopra qualsivoglia superficie la proprietà di essere (generalmente parlando) determinata senza ambiguità da due dei suoi punti. Ma per le superficie di curvatura costante, e per queste sole, sussiste integralmente la proprietà analoga a quella della retta nel piano, cioè: Se si hanno due superficie, la cui curvatura sia costante in ogni punto ed eguale in entrambe, e se su ciascuna di esse esiste una linea geodetica, facendo combaciare le due superficie in modo che le geodetiche si sovrap-