Pagina:Dalle dita al calcolatore.djvu/108

Da Wikisource.
Jump to navigation Jump to search
86 iv. i greci

Costruzione della curva di Ippia e trisezione di un angolo. impegnarsi per la ricerca di soluzioni ortodosse o meno, giungendo a nuove scoperte, specialmente a proposito di curve.


9. Ippocrate di Chio

Ippocrate di Chio fa il mercante e nel 430 si trasferisce ad Atene. Non essendo abile e astuto come Talete, gli affari vanno male: si dice abbia perso tutto il suo denaro, vittima di una frode a Bisanzio, oppure a causa dei pirati.

Frequentando i filosofi di Atene, egli ha modo di scoprire le proprie attitudini e si dedica con successo allo studio della geometria. Scrive un libro, Elementi di Geometria, che non ci è pervenuto. Si ritiene sia stato il primo a usare lettere nelle figure geometriche. Il contributo maggiore lo dà nella quadratura di alcune lunule. La lunula è una figura geometrica che assomiglia proprio alla falce della luna. Partendo da un semicerchio circoscritto a un triangolo rettangolo isoscele, Ippocrate dimostra che l’area della lunula ABCD è equivalente a quella del triangolo rettangolo isoscele ABC e, quindi, a quella del quadrato AEFG.