Pagina:Galilei - Discorsi e dimostrazioni matematiche intorno a due nuove scienze - 1638.djvu/248

Da Wikisource.

ik del cerchio ibk la bd è perpendicolare, sarà il quadrato della bd eguale al rettangolo fatto dalle parti id, dk; e parimente nel cerchio superiore, che s’intende passare per i punti g, f, h, il quadrato della linea fe è eguale al rettangolo delle parti geh; adunque il quadrato della bd al quadrato della fe ha la medesima proporzione che il rettangolo idk al rettangolo geh. E perché la linea ed è parallela alla hk, sarà la eh eguale alla dk, che pur son parallele: e però il rettangolo idk al rettangolo geh arà la medesima proporzione che la id alla ge, cioè che la da alla ae: adunque il rettangolo idk al rettangolo geh, cioè il quadrato bd al quadrato fe, ha la medesima proporzione che l’asse da alla parte ae: che bisognava dimostrare.

L’altra proposizione, pur necessaria al presente trattato, così faremo manifesta.

Segniamo la parabola, della quale sia prolungato fuori l’asse ca in d, e preso qualsivoglia punto b, per esso intendasi prodotta la linea bc, parallela alla base di essa parabola; e posta la da eguale alla parte dell’asse ca, dico che la retta tirata per i punti d, b non cade dentro alla parabola, ma fuori, sì che solamente la tocca nell’istesso punto b. Imperò che, se è possibile, caschi dentro, segandola sopra, o, prolungata, segandola sotto, ed