Vai al contenuto

Pagina:Le opere di Galileo Galilei VIII.djvu/97

Da Wikisource.

mentre non era più lungo di mezzo braccio e grosso tre o quattro volte più del dito pollice, assottigliato alla finezza d’un capello si sia allungato sino in venti mila braccia (che sarebbe anche più assai), troveremo, la sua superficie esser cresciuta dugento volte più di quello che era; ed in consequenza quelle foglie d’oro, che furon soprapposte dieci in numero, distese in superficie dugento volte maggiore, ci assicurano, l’oro, che cuopre la superficie delle tante braccia di filo, restar non più grosso che la ventesima parte d’una foglia dell’ordinario oro battuto. Considerate ora voi qual sia la sua sottigliezza, e se è possibile concepirla fatta senza una immensa distrazzione di parti, e se questa vi pare una esperienza che tenda anche ad una composizione d’infiniti indivisibili nelle materie fisiche: se ben di ciò non mancano altri più gagliardi e concludenti rincontri.

SAGR. La dimostrazione mi par tanto bella, che quando non avesse forza di persuader quel primo intento per il quale è stata prodotta (che pur mi par che ve l’abbia grande), ad ogni modo benissimo si è impiegato questo breve tempo che per sentirla si è speso.

SALV. Già che veggo che gustate tanto di queste geometriche dimostrazioni, apportatrici di guadagni sicuri, vi dirò la compagna di questa, che sodisfà ad un quesito curioso assai. Nella passata aviamo quello che accaggia de i cilindri eguali, ma diversi di altezze o vero lunghezze: è ben sentire quello che avvenga a i cilindri eguali di superficie, ma diseguali d’altezze; intendendo sempre delle superficie sole che gli circondano intorno, cioè non comprendendo le due basi, superiore e inferiore. Dico dunque che:

I cilindri retti, le superfici de i quali, trattone le basi, siano eguali, hanno fra di loro la medesima proporzione che le loro altezze contrariamente prese.

Siano eguali le superficie de i due cilindri AE, CF, ma l’altezza di questo CD maggiore dell’altezza dell’altro AB: dico, il cilindro AE al cilindro CF aver la medesima proporzione che l’altezza CD alla AB. Perché dunque la superficie CF è uguale alla superficie AE, sarà il cilindro CF minore dell’AE, perché se li fusse eguale, la sua superficie, per la passata proposizione, sarebbe maggiore della superficie AE,