Pagina:Teoria degli errori e fondamenti di statistica.djvu/151

Da Wikisource.
Jump to navigation Jump to search


8.7 · I.A DISTRIBUZIONE NORMALE IN PIU DIMENSIONI 135 8.7 L3 ClISU‘IbLIZIO|‘I€ |‘I0|`lTI3l€ II1 |I)ILI dI|TI€|‘ISI0l1I FIGURA 81 — La funZ1©ne n©rmale 1n due d1mens1©n1, nel p1an© fu, v } delle var1ab1l1 standardrzzate e per un coefhcrente d1 c©rrelaZ1©ne V = 0.8. .·//I "\ ,-·/A ‘\ ./" \ .·' .~ \ —,

/·' /,»' \v —\

./' _./' \ —, ,«·" _,-·’ " \,

__,·«' /,·-' _,,-«' ·,\ \ \_

,./’ _/·‘ ,«·" —, "\ \

__,··’  _,·-'  //‘  _ \,  —.\ \ 

" ·-"`E .··"" gà `·· '\ \~, ' .-/' .·~"' .·ñ§`v\ \ ‘·. \ \ .~·" . -·’ ,- "‘ŕ" '& \ ‘· `\ ., ·' »«&¢·áB' » x \‘* \ ·~ ¤. 0 5 ,·-' ' ,/aárexèà %«Nll\w ;s—@·m:;»;:·__ x \, ~\ ' "' /%•\\\Mc(«` vl" \ ‘·, \

.  .@m`N,*,w\l\x.\<^`\\   '—\ ~, ··\
 '• ‘\ `\ 0* ~~··. ·   ‘· `\. ·-
   \ \. ~·

O- 2 5 ;$®\}mN\g»\`\\\¤\`\«\‘.Meçwkáàà ~·\ ‘~. .««a?$%%‘%:33&¢?¥è¢%&&¥%" p A1 À\ \ \\\ Q vl «‘®`S®Sè3È%éŕ$ů% · `\ `~. , :·•$£¤¢&‘%>2:¢w:·:>m&z/ /0q\\\\\`\\\\\ N ç\m\~m®·::r·xx:>xa \. ·~ ~ , aůůK•%€•‘!•%•ůxY—%•‘·¢€•‘·•\ů%¢¥·¢'»¢f/~ [M" \ \\ ò ůN¤RèX••·!·ů%9¥•%1f« ‘\ \ .~·¢»€·«!¢¢§•=¢<·§···¢%:5:·€¢»·¢·22»£” W ¢‘\\\\\ \ \\»\\ \`\ IANN:-—-—w-<·¢·&9*>;=¢x — ·\ , «·<»·>¤>:·x«mè裷·%:·M·a·¢·@¢/ « %•*`“ `\\\>~\l\ Èw¢‘Qcèc¤¤R¢·—:¤c>:;e*<rv·:裷 \ ~· 0 =¢·x¢»·>»s·a¢:·•>¢M,‘«x<»%:&¢·w»2 M ¢;\ ‘\`\ \‘\\\QNMN¤èxx$m¢<.«x·s¢xc& ·~ ~, %•:·x·x•'·%x•' ç·€·a•*··3x-vv,«•.·x•:·¢x·:·¤v,o:~ Q} ““ `\\\ \ Q I Q \}ò\x““••,·;·ç·;·¤•s•5n·z•·.•, \ ~ @§ác$ů·£E»:&è2•5tůxèrèàá-!'ŕ24’ aW0O¢‘ \\`\·«Nl\\\\N @çè*€&?!T·á5£3ŕ3X&袕s `·\ \

 vw? •\“\\\;·\‘\\\ÈNNàSN*?¢mWè&$¥@¥¥%5àà ·» \
 yv 6•* \\\\\¤· «\ Il \\ \ \ I \\»\»‘·¤¤v ·m¤«¢%¢•x¢& ‘·.

ůç,ç`ç_,}x.•,ç,·»g,·;`,à«;`.:,`,·,;0, I/.0 "\ ‘, «`\\ `“`\\_\\ `·çxQx“,,.ç,•;ç,•;xç,ç.•»ç.·5çç, \

 /%M•\“·*\\\À\AMwcNŕ*è*W%¥¥%:¢@¢·F&¥€*à· `·
 W; ò‘•' •\\\\\\È\> \ ¤`*\\¤‘\   `~·

°à3è&·:€%·:5à5:¢·2¢·¢é%#" W 'N•‘ \\\\‘· ·\f\f\ \·<N\Qůè¤È%%¢·ŕ$¢%ů&·§x \ VW-ck-€c¢&·§¢·&·f·£€á'«!~Z (` W§§\‘ "\\\ \ \N\QQxQ}“-:5¥·¢·!¢&f€·«¢•£¥•£·>·$•:& \ w;xx&x·xm·:%·¤¢&&;w» WMA ;« ç\\“\\\\ \\ \\- q Qx \Qu·tmvxc¢¢&:c&2x·xm·::·x¢;xè2 2.-* ang-: ç;, m·%«·•»v«;»0W/, ~ :·- 4 ‘ \\\\\ \ V \\\ \`\\ ‘“““à•‘5¥•‘$€•%\ů•3%%•à'£·%\·5ů€¥• 2 .6-.-x- ·•,&• ,:%€··.• ob ·'·¢»'~«~ [ «C/WQQ} ‘\ \\\`\·<\ \\\ \\Q\\\“\··x•x-s- ·;·•.•x· ·•,·x•x•,·x•x•‘·m•z•x• ·•, ‘¢3f¢?!•%&?!%<'2'%:!' ; «/Wbůòŕ `\\\\\\\ \\‘*\è\}\N\x$5v$:€&¥cM€ů3¢•§M•ŕ&¢·£c&s ·55v··¤·¢=·»x¢·:·'¢¢~?«m1//AWO**6 “\“ M\\\\x‘uè“·—-·§v¤m3»·r®·:·€·S·>¢·&·è:¤¢·3. `•’¥È%}3‘:%?È%’¤m/WM'00$"\" \\\\\\\HQ\\xèmavsc·•a<««··w£·s«:·x«:«·&»» ’%¢=·:ů耕‘3·¢&<··'J~“m vw' 0 % O •‘ ;\\“È\\\\\ \\\ ‘\\葤\¤·-·%v!¢¤<·€··¢•X€-¢<·:ů&<•‘»·è«!¢·¢€•% ?è%%!•£·á%““%w %Z%§•‘ \\\\\\\\\\ ‘\\}‘\\R§¢£·%:!•£&:?$§?•£·I%!·È¥&¥·%:F£= ·>:è%èढ»$'WWj%'» MN a•\\\\\\Q\\xů““•w$R>X•2®£èI<3è%¢·$¥·£è3¢?" ' 1 ‘·s¢·¢>·:·%«¢¤·!'o/M Q 9%v\\\“\\\\\“ ‘\\\“mà·«·:¤¢3··®•>·x»<·%·€«c»·:¢‘ ' '€%ŕÈ€é%%% % 9 0 • •\\‘ “\\\\“ “\\\\\“•-‘%*5·5%·£·5·W:ů$€¢¤%9X·àX•*’ ·xx·&»x«¢$w¢Z%%à• `•\‘ ““\“®\““w&¢®:»:<M<3¢·@·»è· ‘ %8&:èèá¢Ma%$%•\•‘Èn\\\unWÈá¢á$á¢è%3é%ŕ" wxxammmzA¢%%t•\•9,m\““$®è&:%:%¢x¥·¤è&* e x¢·«·'·%¢Z%*b 9%%* •\•‘ xnnnn ,“¤•%•%%¥•%«·•à•:·«·•à¥·è"' x•*·z·*·v,¢v%¢ #0% 4 4 •\• ,0* `•\\““\“••‘\·%•‘·•\•à€·¢•%%%‘·•\·\:’ Ww-%~%%x•\••¥·•·-%·&·&&&·:r&9>‘r

 '

whwmw>¢%¤•\•%·w•%·w·«wwe-wwe gx?%•%%%•$•%·¥à€ů§·ŕ>’/ ’«%!«ů%€•\•%•%•%•¥à€&¥3ů:&¢*” 1 ·«m;,«»®%%%&—&¢¤·»&»·~ 0 · ¤··'.•,»¢»“•%•à%·\•%•&Q¥·"

  • &®:¢¢¤··‘ '
  • §%€&•‘

- 2 <§· 2 Accenn1am© s©l© brevemente alla c©s1ddetta dzstrzbuzzone normale b1d1— mens10no1le: per essa la densrta d1 pr©bab1l1ta c©ng1unta delle due var1ab1l1 x X ed y e, nel cas© generale, data dalla 2 Z 1 ac- (X Ux)(3’ U ) J' U M WM I M

 2 ( 1 Yy ) U'); (TX Uy Uy

f (X, y) = R 27T GX 0y«/I — V2