Pagina:Bonola - La geometria non-euclidea.djvu/178

Da Wikisource.
Jump to navigation Jump to search


Prescindendo dal postulato d'Euclide, per seguire gli sviluppi di Gauss, Lobacefski, Bolyai, si costruisce un edifizio geometrico, nel quale non s'incontrano contraddizioni logiche e che perciò appunto sembra attestare la possibilità logica dell'ipotesi non-euclidea, che è quanto dire l'indipendenza del postulato d'Euclide dai primi principi della geometria e quindi la sua indimostrabilità. Tuttavia il fatto che non si siano incontrate contraddizioni non basta ad assicurarci di ciò; occorre accertarci che, proseguendo negli indicati sviluppi mai tali contraddizioni potranno incontrarsi. Tale convinzione si può fare scaturire, in modo sicuro, dalla considerazione delle formule della trigonometria non-euclidea. Se infatti ci riferiamo al sistema di tutte le terne di numeri (x, y, z) e consideriamo convenzionalmente ogni terna come un punto analitico, possiamo definire la distanza di due punti analitici partendo dalle formule della suddetta trigonometria non-euclidea. Costruiamo così un sistema analitico, il quale, offrendo una convenzionale interpretazione della geometria non-euclidea, dimostra la possibilità logica di essa.

In questo senso le formule della trigonometria non-euclidea di Lobacefski-Bolyai danno la prova dell'indipendenza del postulato d'Euclide dai primi principii della geometria [relativi alla retta, al piano e alla congruenza].

Si può cercare una prova geometrica dell'indipendenza stessa riattaccandosi agli sviluppi ulteriori, di cui abbiamo fatto menzione. Per ciò conviene partire dal principio che i concetti costruiti dalla nostra intuizione, indipendentemente dalla rispondenza che essi trovano nel mondo esterno, sono a priori logicamente possibili, e così è logicamente possibile la geometria euclidea ed ogni serie di deduzioni su di essa fondata.

Ora, l'interpretazione che la geometria piana non-euclidea iperbolica riceve nella geometria sopra le superficie a curvatura costante negativa offre, fino ad un certo punto, una