Par un point situé dans l’intérieur d’un angle trièdre de sommet , on mène un plan qui coupe lès arêtes du trièdre dans les points , , . Soient , , le valeurs des trois pyramides , , ; je dis que la somme
est constante, de quelque manière qu’on mène le plan sécant.
Soient les coordonnés des cinq ponts , , , , ; , sont des quantités données ainsi que les , , ; on aura
Mais les points , , , étant dans un même plan, on a
remplaçant par , par , par , etc., on obtient
,
donc
,
quantité indépendante de , , .
C’est ce qu’il fallait prouver.
Note
↑[p. 491modifica]Le questioni di cui si tratta nelle Memorie 4, 5, 6, 7, questioni poste rispettivamente nel tomo XV, p. 154; t. XV, p. 383; t. XVI, p. 126; t. XVI, p. 127 della raccolta citata, sono le seguenti:
321. Dans un hexagone gauche ayant les côtés opposés égaux et paralléles, les milieux des côtés sont dans un même plan.
322. Dans un polygone gauche d’un nombre pair de côtés, ayant les côtés opposés égaux et parallèles, les droites qui joignent les sommets opposés et celles qui joignent les milieux des côtés opposés passent par un seul et même point.
344. Un point fixe O est donné dans un angle plan de sommet ; par on mène une transversale rencontrant les côtés de l’angle en et ; et étant les aires des triangles , , la somme est constante, de quelque manière qu’on mène la transversale (Mannheim). [p. 492modifica]
368. , , sont trois fonctions entières linéaires en et ; , sont les équations respectives des côtés , , d’un triangle ; , , sont donc les équations de trois droites passant respectivement par les sommets , , , et se rencontrant au même point ; soient , , les points où rencontre , où rencontre , où rencontre . Trouver en fonction de , , l’equation de la conique qui touche les côtés du triangle en , , .
369. Mêmes données que dans la question précédente. Il s’agit de mener deux droites , rencontrant aux points , , aux points , , aux points , , de telle sorte que les trois systèmes de cinq points , , , , ; , , , , ; , , , , soient en involution, , , étant des points doubles. Trouver en fonction de , , les équations des droites , .